Show all your work for full credit. Unsupported answers = reduced points. Write neat and clearly and with a pencil please.

1) Use the unit circle to find the **exact** trig value of each number. Locate the number on the unit circle.

b.
$$\cos\left(\frac{-3\pi}{4}\right)$$

c.
$$\csc(\frac{7\pi}{3})$$

d.
$$\cot\left(-\frac{\pi}{2}\right)$$

2) Use the unit circle to approximate the value of each expression to two decimal places. **DO NOT USE YOUR CALCULATOR.** Show each number (a, b, c, d) on the circle.

/2]

d. If
$$t$$
 is in quadrant II, and $sin(t) = 0.3$, estimate t .

3) Use unit circles to find the exact value of the product: $\cos(\frac{\pi}{6}) \cdot \csc(\frac{3\pi}{4})$

/4

4) Algebraically determine if the function $f(x) = \frac{\sin(x)\cos(x)}{x}$ is odd, even, or neither.

/4]

5) Given that csc(t) = 3 and cos(t) < 0 find the exact value of the five other trigonometric functions.

/5]

6)	Given the function	$f(t) = -20 \cos(\frac{\pi}{-}t +$	$(\frac{3\pi}{\pi}) + 7$ identify	the following:
U)	Civen the function	$I(i) = -20 \cos(\frac{1}{2}i +$	$\frac{1}{2}$ $\int + I$, identity	the following.

a.	Amplitude	b.	Period		
C.	Vertical Shift	d.	Horizontal Shift	[/6]

7) Make an accurate sketch of the function: $f(t) = 3\sin(\frac{1}{2}t - \frac{\pi}{4}) + 2$. Show at least two periods and label the axes appropriately.

Make an accurate sketch of the function: $g(t) = 3 \sec(\frac{\pi t}{4})$ Show at least two periods and label the axes 8) appropriately.

9) A *variable star* shines at different brightness throughout the year and can be approximated by a sine function. A particular variable star has brightness measured between 5 and 13, with a period of 45 days. On day 8 of this year (i.e., January 8th), it had a brightness of 5. A graph of the brightness is given below.

a. Find a *sine* function that models the brightness of the star for any day *t*.

/5]

b. Use your model to find the brightness on March 22nd (day 82). Round accurately to two decimal places.

/2]

Extra Credit: A pendulum is displaced from its resting position 30 inches. It takes 12.8 seconds to complete 4 cycles and had a maximum displacement of 24 inches. Find a damped harmonic model for the displacement of the pendulum at any time t and estimate its displacement after 30 seconds.