1.5 Solution Sets of Linear Systems

Definition

A homogeneous system of linear equations is any equation that can be written in the form: A x = 0.

		-1 x ₁	+	3 x ₂	+	x 3	=	0
Example 1	Determine if the homogeneous system has a non-trivial solution, i.e., $\mathbf{x} \neq 0$	2 x ₁	-	<i>x</i> ₂	+	3 x ₃	=	0
		3 x ₁	-	4 x ₂	+	2 x ₃	=	0

What must be true for a homogeneous system to have a non-trivial solution?

Example 2

For the system in example 1, write the solution in vector form and describe the solution geometrically.

Write the solution to the equation $4x_1 - 7x_2 - 6x_3 = 0$ in vector form and describe the solution in terms of

Solutions of Nonhomogeneous Systems

		1/	0	-3	
Example 4	Solve the homogeneous equation $A \mathbf{x} = 0$ for $A =$	2	2 2	4 7	, and write the solution in parametric vector

form.

Example 5	Describe the	solution s	et for fo	r the	non-homogeneous	system	of e	quations:	x_1 2 x ₁ + 2	$-3x_3 = 2$ 2x ₂ +4x ₃ =6.
									$x_1 + 2$	$2x_2 + 7x_3 = 4$
Write the solut	tion in the form	$\mathbf{x} = \mathbf{p} + t \mathbf{v}_t$	ŋ .							

Theorem 6

Suppose the equation $A \mathbf{x} = \mathbf{b}$ is consistent for some given \mathbf{b} , and let \mathbf{p} be a solution. Then, the solution set of $A \mathbf{x} = \mathbf{b}$ is the set of all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, where \mathbf{v}_h is any solution to the homogeneous equation $A \mathbf{x} = \mathbf{0}$.