4.4 Indeterminate Forms and L'hospital's Rule

Back in Chapter 2 we evaluated various limits that were indeterminate, e.g., of the forms $\frac{0}{0}$, $\frac{\infty}{\infty}$. Other indeterminate forms are $\infty - \infty$, $0 \cdot \infty$, 0^0 , ∞^0 , 1^∞ , etc. The method was to simplify the expression algebraically and then analyze. For the indeterminate form $\lim_{x\to a} \frac{f(x)}{g(x)} \rightarrow \frac{0}{0}$ (or $\rightarrow \frac{\infty}{\infty}$) the existence of the limit depends on the **rate** the numerator and denominator each go to 0 (or to ∞). For the indeterminate forms the limit depends on which piece of the expression "wins the race", or is there a compromise. This idea leads to L'hospital's Rule for indeterminate limits.

L'hospital's Rule

If $\lim_{x\to a} \frac{f(x)}{g(x)}$ is of the indeterminate form $\frac{0}{0}$ or $\frac{\infty}{\infty}$, then

 $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

Note: this not the quotient rule.

Example 1 Evaluate the following limit algebraically, and then using L'hospital's Rule: $\lim_{x\to 3} \frac{x^2-3x}{x^2+2x-15}$

Example 3	Evaluate:	lim	$\frac{\ln(x)}{x-1}$
Example 3	Evaluate:	lim x→1	<u>x</u> –1

Indeterminate Products

Example 6 Evaluate: $\lim_{x \to \infty} x \cdot \tan\left(\frac{1}{x}\right)$

Indeterminate Powers

Indeterminate Differences

