3.5 The Chain Rule

Objectives: Use the chain rule to find the derivative of composite functions; find the derivative of a general exponential function.

Suppose we need to find the derivative of $(x^2 - 5x + 1)^3$. The "hard" way:

$$\frac{d}{dx} \left[\left(x^2 - 5 x + 1 \right)^3 \right] = \frac{d}{dx} \left[x^6 - 15 x^5 + 78 x^4 - 155 x^3 + 78 x^2 - 15 x + 1 \right]$$

= 6 x⁵ - 75 x⁴ + 312 x³ - 465 x² + 156 x - 15
= ... some fancy factoring...
= 3 (2 x - 5) (x² - 5 x + 1)² •

Now, the "easy" way.

The Extended Power Rule

If *n* is a real number and f(x) is differential, then

$$\frac{d}{dx}[f(x)^n] = n[f(x)^{n-1}] \cdot f'(x)$$

Example 1

Find the derivative of:
$$f(x) = \sqrt{2x^3 - 4x + 1}$$

Example 2 Find the derivative of: $f(x) = (2x + 3)^4 (4x - 1)^7$. Simplify by factoring, and find where f'(x) = 0.

Example 3 Find the derivative of:
$$f(x) = \sqrt[3]{\frac{2x+1}{x^2+5}}$$

The Chain Rule

If *f* and *g* are both differentiable and $h = f \circ g$ is the composite function defined by h(x) = f(g(x)), then *h* is differentiable and *h*' is given by the product

$$h'(x) = f'(g(x)) \cdot g'(x)$$

In Leibniz's notation, if y = f(u) and u = g(x) are both differentiable then

 $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

Example 5

Find the derivative of: $f(x) = tan(e^{-3x^2+x})$

Example 6 Let r(x) = f(g(h(x))), where h(1) = 2, g(2) = 3, h'(1) = 4, g'(2) = 5, and f'(3) = 6. Find r'(1).

Derivative of a General Exponential Function

Example 7 Use the properties of logarithms to find the derivative of $f(x) = 5^x$.

