2.5 Continuity

Ö

Objectives: Determine if a function is continuous at a point; classify discontinuities; use the Intermediate Value Theorem.

Laymen's Definition: A function is continuous if the entire graph of the function can be made without lifting your pencil.

Real Definition: A function *f* is **continuous** at *x* = *a* if

- 1. *f*(*a*) exists,
- 2. $\lim_{x \to a} f(x)$ exists, and
- 3. $\lim_{x \to a} f(x) = f(a)$

Example 1 Determine if the function *f* is continuous at x = 3: $f(x) = \begin{cases} \frac{x^2-9}{3-x} & \text{if } x < 3 \\ -6 & \text{if } x = 3 \\ -3x+3 & \text{if } x > 3 \end{cases}$

Example 2	Find the value of <i>a</i> which will make the function <i>f</i> continuous at $x = -2$: $f(x) = \begin{cases} \\ \\ \\ \\ \\ \end{cases}$	$\int \frac{x^3+8}{x+2}$	if $x < -2$
		$ax^{2} + 3$	if $x \ge -2$

Types of Discontinuities

Definition

A function *f* is called **continuous from the right at** *a* if $\lim_{x\to a^+} f(x) = f(a)$, and *f* is **continuous from the left at** *a* if $\lim_{x\to a^-} f(x) = f(a)$.

Example 3 Show that the function $f(x) = \sqrt{4 - (x - 3)^2} + 1$ is continuous on the interval [1, 5].

Theorem

If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

1.
$$f + g$$

2. $f - g$
4. fg
5. $\frac{f}{g}$ if $g(a) \neq 0$

This means that **all** *polynomials* are continuous everywhere, that is continuous on $\mathbb{R} = (-\infty, +\infty)$, and all rational functions are continuous on their domain. Most of our familiar functions are continuous on their domain including:

3. cf

polynomial functions	rational functions	root functions	trigonometric functions
inverse trigonometric function	ns exponential	functions	logarithmic functions

Example 4 Where is the function $f(x) = \frac{\sqrt{x} + \cos^{-1}(\frac{x}{5})}{x-2}$ continuous?

Theorem: Continuity of Composite Functions

If *g* is continuous at *a* and *f* is continuous at g(a), then the composite function $f \circ g$ given by $(f \circ g)(x) = f(g(x))$ is continuous out at *a*. Basically, "a continuous function of a continuous function is a continuous function".

Intermediate Value Theorem

An important and useful property of a continuous function is the Intermediate Value Theorem

Theorem

Suppose that *f* is continuous on the closed interval [*a*, *b*] and let *N* be any number between *f*(*a*) and *f*(*b*), where $f(a) \neq f(b)$. Then there exists a number *c* in [*a*, *b*] such that f(c) = N.

Example 5 Show that there is a zero of the function $f(x) = \ln(x) + x^2 - 5x$ on the interval (4, 5).

Example 6 Given the function $f(x) = 2 \sec(x)$, find f(1) and f(2). Is there a zero between 1 and 2?