2.4 Absolute Extrema (or Global Extrema)

Absolut Extreme Values

The absolute extreme value of a function on an interval *I* is the value that is the largest (or smallest) value of the entire function on that interval. That is:

f(c) is an **absolute maximum** if $f(c) \ge f(x)$ for all x in I.

f(c) is an **absolute minimum** if $f(c) \le f(x)$ for all x in I.

Example 1 Find the absolute extrema of the function $f(x) = \frac{1}{2}x^2 - 3x + 4$ on the interval [0, 4]

Steps to Find Extreme Values

Suppose f is continuous on a closed interval [a, b]

- **1.** Find all the critical numbers in [a, b] (when f'(x) = 0 or f'(x) is undefined.)
- **2.** List the critical numbers and the **endpoints**: a, c_1 , c_2 , c_3 , ..., b
- **3.** Evaluate f(x) at each value in step 2: f(a), $f(c_1)$, $f(c_2)$, ..., f(b)
- 4. The largest value in step 3 is the absolute maximum and the smallest value is the absolute minimum.

Example 2 Find the absolute extrema of the function $f(x) = -x^3 - 4x^2 + 3x + 18$ on the Interval [-2, 4]

Example 3 Find the absolute extrema for the function $f(x) = (x - 3)^5 (x + 6)^3$ on [-4, 4].

Example 4 Find the absolute extrema of $f(x) = -4x^2 + 2x - 7$ on the interval [0, 2]

What can be said if there is only one critical number c in the interval and $f''(c) \neq 0$?