8.3 Complex Numbers in Polar Coordinates

Complex Number in the Complex Plane

The complex plane is a rectangular coordinate system where the *x*-axis is the real number line (*re*), and the *y*-axis is the complex number line (*im*). Complex numbers, *a* + *b i* are plotted in the complex plane, using the coordinates *a* and *b* as coordinates (*a*, *b*).

Polar Form of a Complex Number

Using trigonometry, the complex number z = a + bi can be written in polar form:

 $z = r(\cos(\theta) + i\sin(\theta))$ where $r = \sqrt{a^2 + b^2}$ and $a = r\cos(\theta)$, $b = r\sin(\theta)$

This is sometimes abbreviated as $z = r c i s \theta$. Note: *r* is called the **modulus** and the notation is r = || a + b i ||; the angle is called the **argument**, and is found using $tan(\theta) = \frac{b}{a}$.

Example 1 Convert the polar complex numbers to rectangular form. Approximate to two decimals if necessary.

(a) $5(\cos(30^\circ) + i\sin(30^\circ))$ (b) $8(\cos(\frac{\pi}{2}) + i\sin(\frac{\pi}{2}))$ (c) $3 c i s 232^\circ$

Example 2	Convert the comp	lex numbe	rs from recta	ngular form to p	olar form.
(a) 4	+ 2 <i>i</i>	(b)	–2 + 3 <i>i</i>	(c) -4	

The Product and Quotient of Two Complex Numbers

The product of two complex numbers $z_1 = r_1(\cos(\theta_1) + i\sin(\theta_1))$ and $z_2 = r_2(\cos(\theta_2) + i\sin(\theta_2))$ is

 $z_1 \cdot z_2 =$

Example 3 Find the product of the given complex numbers. Check your answer converting both numbers to rectangular form and then finding the product.

 $z_1 = 4 (\cos(45^\circ) + i \sin(45^\circ))$ and $z_2 = 3 (\cos(60^\circ) + i \sin(60^\circ))$

÷	z ₁ _			
-	z ₂			

Complex Numbers Raised to a Power

The polar form of a complex number makes it easy to find the value of a complex number raised to a positive integer power, i.e., z^{12} . Using repeated multiplication and the *product* formula gives the following:

DeMoivre's Formula for Powers

Let $z = r(\cos(\theta) + i\sin(\theta))$, then z raised to the n^{th} power is given by

$$z^{n} =$$
Example 4 Given $z = 2 (\cos(36^{\circ}) + i \sin(36^{\circ}))$, find z^{5} . Write answer in rectangular form.

Example 5 Find $(3 + 3i)^7$. Write answer in rectangular form.

The Root of a Complex Number

What is the square-root of 25? What is the 6th root of 64? What is $(1 + i\sqrt{3})^6$? What is $(1 - i\sqrt{3})^6$. How many 6th roots of 64 do you think there are?

DeMoivre's Formula for Powers

 \heartsuit Let $z = r(\cos(\theta) + i\sin(\theta))$, then the *n* nth roots of *z* are given by

 $z^{1/n} =$

Example 6 Find the five 5th roots of –32. Write the roots in exact polar form and rectangular form rounded to three decimal places.

Example 7 Find the four 4th roots of *i*.