5.3a Graphs of Sine and Cosine Functions

Objective: (1) Graph functions of the form $y = sin(\omega x)$ and $y = cos(\omega x)$ (2) Use transformations to graph sinusoidal functions.

\heartsuit Graphs of $y = \sin(x)$ and $y = \cos(x)$

Example 1 Use the unit circle to make an accurate sketch of y = sin(x) and y = cos(x).

	-1.5			r
	- 1		4.	
	-0.5		0.5	
3π π π	π π 3π	5π 3π 7π 9π 5π 11π	3π π π	π π 3π 5π 3π 7π 9π 5π 11π
$-\pi$ $\frac{1}{4}$ $\frac{2}{2}$ $\frac{4}{4}$	-0.5	$\pi \overline{4} \overline{2} \overline{4} 2\pi \overline{4} \overline{2} \overline{4}$	3π $-\pi$ $-\frac{\pi}{4}$ $-\frac{2}{2}$ $-\frac{4}{4}$ $-\frac{2}{-1}$ $-\frac{4}{-1}$ $-\frac{2}{-1}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	-1			
	-1.5			.L

Transformations of Trigonometric Functions

♥ Our goal is to be able to sketch a function in the form $f(x) = a \sin[b(x - c)] + d$. First, let's look at the affects of the transformation parameters *a* and *b*.

Amplitude of a Sinusoidal Function

The **amplitude** of a sinusoidal function is the distance from the center line of the function to the maximum (or minimum) value of the function. For $f(x) = a \sin(x)$, the amplitude is the value |a|. Note: If a < 0 it is also a vertical reflection.

The Period of a Sinusoidal Function

Recall that the transformation f(bx) is a horizontal *compression* when b > 1. This means the **period** is affected when b changes. Since the period of $\sin(x)$ is $0 \le x \le 2\pi$, the period of $\sin(bx)$ is $0 \le bx \le 2\pi$, or $0 \le x \le \frac{2\pi}{b}$.

The **period** of $f(x) = \sin(bx)$ or $f(x) = \cos(bx)$ is

Another way to interpret *b*, is that there are *b* "cycles" from 0 to 2 π , e.g., the graph of $f(x) = 20 \sin(8x)$ has 8 cycles from 0 to 2 π .

Graph the function $f(x) = 12\cos(5x)$.

Graph the function $f(x) = 3\cos\left(\frac{\pi x}{4}\right)$

Find the equation of the function whose graph is:

